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Abstract. The duality transformation is applied to the Fisher zeros near the ferromagnetic
critical point in theq > 4 state two-dimensional Potts model. A requirement that the locus
of the duals of the zeros be identical to the dual of the locus of zeros in the thermodynamic
limit (i) recovers the ratio of specific heat to internal energy discontinuity at criticality and
the relationships between the discontinuities of higher cumulants and (ii) identifies duality with
complex conjugation for the zeros near the ferromagnetic critical point. The conjecture that all
zeros governing ferromagnetic singular behaviour satisfy the latter requirement gives the full
locus of such Fisher zeros to be a circle. This locus, together with the density of zeros is
then shown to be sufficient to recover thesingular part of the thermodynamic functions in the
thermodynamic limit, their regular parts coming from separate loci of zeros not crossing the
positive real temperature axis.

1. Introduction

The q-state Potts model [1], introduced in 1952 as a generalization of the Ising model [2],
has become the generic model for the analytical and numerical study of first- and second-
order phase transitions [3]. Apart from the one-dimensional case [1], the only solution
which exists to date is for theq = 2 (Ising) model in two dimensions and in the absence
of an external magnetic field [4]. The partition function for the standard Potts model is
ZL(β) =

∑
{σi } exp(β

∑
〈ij〉 δσiσj ) whereβ = 1/(kBT ) andT is the temperature. The spin

σi at sitei on ad-dimensional lattice takes values 1, 2, . . . , q and the total number of sites
is V = Ld . Despite the absence of a full solution for generalq, some exact results are
obtainable ind = 2 dimensions. The first of these is that, up to an irrelevant multiplicative
constant, the form of the partition function is unchanged under a duality transformation in
the thermodynamic limit [1]. In terms of the low-temperature expansion variableu = e−β ,
this duality transformation isu→ D(u), where

D(u) = 1− u
1+ (q − 1)u

. (1)

The critical temperature at which the phase transition occurs is invariant under (1) and is
given by [1]

D(uc) = uc or uc = 1

1+√q . (2)

Baxter has shown thatat the critical point the model is equivalent to a solvable homogeneous
ice-type model [5, 6]. By deriving the latent heat at criticality it was shown that the phase
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transition in the two-dimensional model is first (second) order forq > 4 (q 6 4). In fact, for
theq > 4 case, the exact values of the latent heat, the mean internal energy and the specific
heat discontinuity (but not, for example, the mean specific heat) are known [1, 5–7]. The
full form of the free energy (and derivable thermodynamic functions) of the Potts model
has, however, never been calculated for generalq and generalT . In the words of Baxter,
solving the Potts model for general temperatures is, therefore, ‘a very tantalising problem’
[6]. The Potts model is reviewed in [7].

In this paper the problem is approached using a remarkably general and recently derived
result concerning the partition function zeros of models with a first-order phase transition
[8].

For finite systems the zeros of the partition function [9] are strictly complex (non-real).
As L→∞ one expects these zeros to condense onto a smooth curve whose impact on to
the real parameter axis precipitates the phase transition. Knowledge of the locus and density
of partition function zeros is sufficient to determine the full thermodynamic behaviour of the
system. Fisher [10] emphasized the application of zeros in the complex temperature plane
to the study of temperature-driven phase transitions. In particular, in [10], the Kaufman
solution [11] of the two-dimensional Ising model was used to show that the Fisher zeros
(also called complex temperature zeros [12]) are dense on two circles in the complexu-plane
in the thermodynamic limit.

The question of the locus of Fisher zeros in thed = 2 Potts model, in particular, is one
which has recently received an increased amount of attention (see [8, 12–17]). Based on
similarities with the Ising case, Martin [13] and Maillard and Rammal [14] conjectured that
the locus of Fisher zeros in thed = 2, q-state Potts model can be given by an extension
of (2) to the complex plane, namelyD(u) = u∗, whereu∗ is the complex conjugate ofu,
although on this basis alone it was ‘not clear where this requirement comes from’ [13]. In
section 2 the origin of this identification is explained. This identification yields a circle
with centre−1/(q − 1) and radius

√
q/(q − 1). Whenq = 2 this recovers the so-called

ferromagnetic Fisher circle of the Ising model [10]. In the Ising case, the partition function
is actually a function ofu2. There, the second (so-called antiferromagnetic) Fisher circle
comes from the mapu → u−1 (β → −β). Numerical investigations for small lattices at
q = 3 and 4 [13, 14] provided evidence that the Fisher zeros do indeed lie on the circle
given by the identification of duality with complex conjugation. However, the numerics
are highly sensitive to the boundary conditions used and the situation far from criticality
remained unclear. Some progress was made recently in the non-critical region using low-
temperature expansions for 36 q 6 8 [12].

Recently, and on the basis of numerical results on small lattices (up toL = 7) with
q 6 10, it has again been conjectured that for finite lattices with self-dual boundary
conditions, and for other boundary conditions in the thermodynamic limit, the zeros in
the ferromagnetic regime are on the above circle [15]. The conjecture of [15] was, in fact,
proven for infiniteq in [16]. This circle conjecture is similar to another recent conjecture
[17], namely that the Fisher zeros for theq-state Potts model on a triangular lattice with
pure three-site interaction in the thermodynamic limit (which is also self-dual [18]) lie on
a circle and a segment of the negative real axis.

All of the above conjectures regarding the locus of Fisher zeros are, at least in part,
numerically based. In this paper, the problem is addressed analytically. A requirement
that taking the thermodynamic limit and application of the duality transformation to the
Fisher zeros be commutative in theq > 4 case (i) recovers the ratio of specific heat
discontinuity to latent heat and corresponding relationships between the discontinuities of
higher cumulants and (ii) analytically identifies duality with complex conjugation for the
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zeros near ferromagnetic criticality. Conjecturing that all zeros governing ferromagnetic
singular behaviour satisfy the latter requirement, the locus of such Fisher zeros is shown
to indeed be a circle. This locus, together with the density of zeros is then shown to be
sufficientto recover the singular form of all thermodynamic functions in the thermodynamic
limit. It is therefore expected that the regular behaviour of these thermodynamic functions is
governed by separate (undetermined) loci of zeros not crossing the positive real temperature
axis.

2. Thermodynamic functions

For finite L, the partition function can be written as a polynomial of finite degree in
u, and as such, can be expressed in terms of its complex Fisher zerosuj (L) [9] as
ZL(β) ∝

∏dV
j=1 (u− uj (L)). The free energy is defined byβf (β) = − lnZ(β)/V . The

internal energy is therefore

e(β) = ∂(βf )

∂β
= constant+ u

V

dV∑
j=1

1

u− uj (L) . (3)

The specific heat and the generalnth cumulant are, respectively, defined as

c(β) = −kBβ2∂
2(βf )

∂β2
γn(β) = (−)n+1∂

n(βf )

∂βn
. (4)

Using the notation

1γn ≡ lim
β↗βc

γn(β)− lim
β↘βc

γn(β) (5)

for the discontinuity in thenth cumulant at the critical temperature, the exact results [1, 5–7]
(in the thermodynamic limit) are

e ≡ 1
2

(
lim
β↗βc

e(β)+ lim
β↘βc

e(β)

)
= −

(
1+ 1√

q

)
(6)

1e = 2

(
1+ 1√

q

)
tanh

(
2

2

) ∞∏
n=1

tanh2 (n2) (7)

1c = kBβ2
c

1e√
q

(8)

where2 = ln
(√
q/4+√q/4− 1

)
. Further results include the general higher cumulant

combinationγn(β−c )− (−)nγn(β+c ) determinable from duality [7, 19, 20].

3. Partition function zeros

Recently, Lee [8] has derived a general theorem for first-order phase transitions in which the
partition function zeros can be expressed in terms of the discontinuities in the thermodynamic
functions (for finite size as well as in the infinite volume limit). One may recover Lee’s
result for theq-state Potts model with largeq from the following rigorous result: in a finite
volumeV = Ld with periodic boundary conditions and close to the transition pointβc, the
partition function for the Potts model with a disordered phase of free energyfd(β) and a
q-fold degenerate ordered phase of free energyfo(β) is [21]

ZL(β) = e−Vβfd (β) + qe−Vβfo(β) +O(e−bL)e−Vβmin{fd (β),fo(β)} (9)
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in which b is a positive constant. This partition function is zero when

β(fd(β)− fo(β)) = −
ln q +O(e−bL)

V
± i

2j − 1

V
π (10)

for integerj . Expanding the left-hand side aroundβc and dropping theO
(
e−bL

)
term, one

finds†

ln q

V1e
± i
(2j − 1)π

V1e
= βct + t2

2!

1c

kB1e
+
∞∑
n=3

(βct)
n

n!

1γn

1e
(11)

where the reduced temperature ist = 1− β/βc. This is the same result as that of Lee [8]
for a system with a temperature-driven phase transition. Inverting, we find [8]

βc Retj (L) = A1Î
2
j + A3Î

4
j + A5Î

6
j + · · · +O(1/V )

±βc Im tj (L) = Îj + A2Î
3
j + A4Î

5
j + · · · +O(1/V )

(12)

where Îj = (2j − 1)π/(V1e) andO(1/V ) represents terms which vanish in the infinite
volume limit and where the coefficientsAn are easily calculable, the first few being [8]

A1 = 1c

2kBβ2
c1e

(13)

A2 = −2A2
1+

1γ3

3!1e
(14)

A3 = −5A3
1+ 5A1

1γ3

3!1e
− 1γ4

4!1e
(15)

A4 = 14A4
1− 21A2

1
1γ3

3!1e
+ 3

(
1γ3

3!1e

)2

+ 6A1
1γ4

4!1e
− 1γ5

5!1e
(16)

A5 = 42A5
1− 84A3

1
1γ3

3!1e
+ 28A1

(
1γ3

3!1e

)2

+ 28A2
1
1γ4

4!1e
− 7

1γ3

3!1e

1γ4

4!1e

−7A1
1γ5

5!1e
+ 1γ6

6!1e
. (17)

From (12) the real part of the zeros (in the thermodynamic limit) can be expressed in
terms of their imaginary parts asβc Ret = L(βc Im t) where

L(θ) = A1θ
2+ (−2A1A2+ A3)θ

4+ (7A1A
2
2− 2A1A4− 4A2A3+ A5)θ

6+ · · · . (18)

The zeros are thus seen to lie on a curve. In the complexu upper half-plane the equation
of this curve is

γ (+)(θ) = uceL(θ)+iθ . (19)

This defines the locus of zeros in the infinite volume limit.

† The author thanks Wolfhard Janke for pointing out this argument.
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3.1. The dual of the locus of zeros and the locus of the duals of the zeros

Applying the duality transformation (1) toγ (+)(θ) and expanding in powers ofθ gives the
dual of the locusD

(
γ (+)(θ)

)
:

ReD
(
γ (+)(θ)

) = uc[1+ θ2

2q
(2
√
q − 2A1q − q)− θ4

24q2

(
24
√
q − 36q + 14q3/2− q2

−72A1q + 72A1q
3/2− 12A1q

2+ 24A2
1q

3/2− 12A2
1q

2

−48A1A2q
2+ 24A3q

2
)+ · · · ] (20)

ImD
(
γ (+)(θ)

) = −uc[θ − θ3

6q

(
6− 6q1/2+ q − 12A1q

1/2+ 6A1q
)

− θ5

120q2

(−120+ 240q1/2− 150q + 30q3/2− q2+ 480A1q
1/2− 720A1q

+280A1q
3/2− 20A1q

2− 360A2
1q + 360A2

1q
3/2− 60A2

1q
2+ 480A1A2q

3/2

−240A1A2q
2− 240A3q

3/2+ 120A3q
2
)+ · · · ]. (21)

Alternatively, applying the duality transformation (1) directly to thej th zero in the
finite-size system and expanding again, gives

βc RetDj (L) = AD1 Î 2
j + AD3 Î 4

j + AD5 Î 6
j + · · · +O(1/V )

∓βc Im tDj (L) = Îj + AD2 Î 3
j + AD4 Î 5

j + · · · +O(1/V )
(22)

where the first few coefficientsADn are

AD1 = q−1/2− A1 (23)

AD2 = −q−1+ 2q−1/2A1+ A2 (24)

AD3 = − 1
12q
−1/2− q−3/2+ 3q−1A1− q−1/2A2

1+ 2q−1/2A2− A3 (25)

AD4 = 1
4q
−1+ q−2− 1

3q
−1/2A1− 4q−3/2A1+ 3q−1A2

1− 3q−1A2+ 2q−1/2A1A2

+2q−1/2A3+ A4 (26)

AD5 = 1
360q

−1/2+ 1
2q
−3/2+ q−5/2− 5

4q
−1A1− 5q−2A1+ 6q−3/2A2

1+ 1
2q
−1/2A2

1− q−1A3
1

− 1
3q
−1/2A2− 4q−3/2A2+ 6q−1A1A2+ q−1/2A2

2+ 3q−1A3− 2q−1/2A1A3

+2q−1/2A4− A5. (27)

From (22) the real part of the dual zeros can be expressed in terms of their imaginary parts
in the thermodynamic limit asβc RetDj = LD(Im tDj ) where

LD(θ) = AD1 θ2+ (−2AD1 A
D
2 + AD3 )θ4+ (7AD1 AD2

2− 2AD1 A
D
4 − 4AD2 A

D
3 − AD5 )θ6+ · · · .

(28)

Therefore, the locus of the duals of the upper half-plane zeros in the thermodynamic limit
is given by

γ (+)
D
(θ) = uceLD(θ)−iθ . (29)
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The expansion of this locus of duals is

Reγ (+)
D
(θ) = uc

[
1+ θ

2

2!

(−1+ 2AD1
)

+θ
4

4!

(
1− 12AD1 − 48AD1 A

D
2 + 24AD3 + 12AD1

2)+ · · · ] (30)

Im γ (+)
D
(θ) = −uc

[
θ + θ

3

3!

(−1+ 6AD1
)

+θ
5

5!

(
1− 20AD1 + 60AD1

2− 240AD1 A
D
2 + 120AD3

)+ · · · ]. (31)

In deriving the dual of the locus of zeros (20) and (21), the duality transformation
was appliedafter the thermodynamic limit of the positions of the zeros (i.e. their locus)
was taken. In equations (30) and (31) the duality transformation was applied to the zeros
before taking the thermodynamic limit. Even in the case where the finite-L system does
not have duality-preserving boundary conditions, taking the thermodynamic limit restores
self-duality. The dual of the (thermodynamic limit) locus of zeros and the (thermodynamic
limit) locus of the duals of the zeros must be identical. We therefore demand, that

D
(
γ (+)

) ≡ γ (+)D (32)

order by order in the expansion inθ . Up toO(θ2) this is trivial. ToO(θ3) and (separately
at)O(θ4) they are identical ifA1 = 1/(2

√
q). From (13), this is the result (8). The identity

(32) atO(θ5) and (separately at)O(θ6) givesA3 = A2/
√
q− q−3/2(q−3)/24, which from

(14) and (15) means that

1γ4 = 6√
q
1γ3+ q − 6

q3/2
1e. (33)

Higher-order results are obtainable using a computer algebra system such as Maple. To
ordersO(θ7) andO(θ8) and (separately) to ordersO(θ9) andO(θ10) one finds

1γ6

6!1e
= 5

2q1/2

1γ5

5!1e
+ q − 20

8q3/2

1γ3

3!1e
+ 1

6!q1/2
− 1

8q3/2
+ 1

2q5/2
(34)

and
1γ8

8!1e
= 7

2q1/2

1γ7

7!1e
+
(

5

24q1/2
− 35

4q3/2

)
1γ5

5!1e
+
(

3

6!q1/2
− 15

16q3/2
+ 21

2q5/2

)
1γ3

3!1e

+ 1

8!q1/2
− 23

960q3/2
+ 5

8q5/2
− 17

8q7/2
(35)

respectively. These results and further results for the higher cumulants at criticality are also
obtainable directly from the duality transformation (33) (see [7, 19, 20]).

3.2. The full ferromagnetic locus of zeros

Putting the above equations into (23)–(27) (and their higher-order equivalents) yields
ADj = Aj (this has been verified up toj = 8). Therefore (at least up toθ10) the dual
of the locus of zeros is the complex conjugate of the original locus of zeros. We now
assume that this is the case for allθ . Then, the full ferromagnetic locus of zeros (that part
of the full locus which intersects the real temperature axis at the physical ferromagnetic
critical point) is found by identifying [13, 14]

D
(
γ (+)(θ)

) = γ (+)∗(θ) (36)
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whereγ (+)∗ represents the complex conjugate ofγ (+). The full ferromagnetic locus is then
[13, 14]

γ (θ) = 1

q − 1

(−1+√qeiθ
)
. (37)

This circular locus is analogous to the circle theorem of Lee and Yang [9]. In the
field-driven case, where one is interested in Lee–Yang zeros in the complexz = exph
plane (h is an external magnetic field), formulae analogous to (12)–(17) apply wheree,
c, etc are replaced by the corresponding derivative of the free energy with respect toh

(the magnetizationm, the susceptibilityχ , etc). There, the partition function is unchanged
underh → −h and consequently1γl = 0 for evenl. ThereforeL(θ) = 0 and the locus
of zeros isz = exp iθ . This is Lee’s proof of the Lee–Yang theorem [8]. One observes
that consideringh→−h as a self-duality map and identifying it with complex conjugation
yields this locus.

4. The singular parts of the thermodynamic functions in the thermodynamic limit

From (11), the density of zeros in the temperature driven case is†

g(θ) = lim
V→∞

1

V

dj

dθ
= 1e

2π

(
1+ 1

(q − 1)γ (θ)

){
1+ 1c

kBβ2
c1e

ln ((
√
q + 1)γ (θ))

+ 1

2!

1γ3

1e
(ln ((
√
q + 1)γ (θ)))2+ 1

3!

1γ4

1e
(ln ((
√
q + 1)γ (θ)))3+ · · ·

}
. (38)

The internal energy is (from (3) or [22, 23])

e = constanst+ u
∫ 2π

0

g(θ)

u− γ (θ)dθ. (39)

Therefore, from (37)–(39), the internal energy is

e(β < βc) = e0 (40)

e(β > βc) = e0−1e
{

1+ 1c

kBβ2
c1e

(βc − β)+ 1

2!

1γ3

1e
(βc − β)2

+ 1

3!

1γ4

1e
(βc − β)3+ · · ·

}
. (41)

When separate Fisher loci which do not cross the positive real temperature axis are accounted
for, e0 becomes a temperature-dependent quantity corresponding to the regular part of
the internal energy near the transition point. Atβc the internal energy discontinuity
e(β = β−c ) − e(β = β+c ) = 1e is recovered. Appropriate differentiation recovers the
discontinuities in specific heat and higher cumulants. Thus the locus (37) and the density
(38) are sufficient to give thesingular parts of the thermodynamic functions in the infinite-
volume limit.

5. Conclusions

In summary, we have applied the duality transformation (1), under which thed = 2 q-state
Potts model is invariant, to the Fisher zeros recently found by Lee [8] for systems with a
first-order phase transition. The requirement that the dual of the locus of zeros be identical

† The existence of a unique density of zeros in the thermodynamic limit was proven by Salmhofer [24].
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to the locus of the duals of the zeros order by order in the expansion parameterθ in the
thermodynamic limit (i) recovers the ratio of specific heat to internal energy discontinuity at
criticality and the relations between the discontinuities of higher cumulants and (ii) identifies
duality with complex conjugation order by order inθ .

While we have verified the identification (ii) up toO(θ10), the conjecture that it holds
(for zeros governing ferromagnetic critical behaviour) to all orders gives that the full
ferromagnetic locus is the circle (37) in the complexu-plane. The equation (37) was first
conjectured by Martin [13] and Maillard and Rammal [14] on the basis of analogous Ising
results [10]. The same conjecture, based on numerical results for small lattices was made in
[15] and proven forinfinite q in [16] (see also [17]). Thus while this idea has been around
for a long time and supported by numerical results on small lattices, this identification of
the dual of the locus with the locus of the duals places it on an analytic footing.

The locus (37), together with the density of zeros is sufficient to recover thesingular
parts of all thermodynamic functions in the thermodynamic limit. It is to be expected that
the regular parts come from separate loci of zeros which do not cross the positive real
temperature axis.
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